The Classification of Tiling Space Flows
نویسنده
چکیده
We consider the conjugacy of the natural flows on one-dimensional tiling spaces presented as inverse limits. We also draw connections between geometric models and the spectral information for such flows.
منابع مشابه
Homological Pisot Substitutions and Exact Regularity
We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and the first rational Čech cohomology is d-dimensional. We construct examples of such “homological Pisot” substitutions whose tiling flows do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide ...
متن کاملTilings, Tiling Spaces and Topology
To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic tiling), we construct a space of similar tilings, on which the group of translations acts naturally. This space is then an (abstract) dynamical system. Dynamical properties of the space (such as mixing, or the spectrum of the translation operator) are closely related to bulk properties of individual tilings (such as th...
متن کاملN ov 2 00 8 COHOMOLOGY OF SUBSTITUTION TILING SPACES
Anderson and Putnam showed that the cohomology of a substitution tiling space may be computed by collaring tiles to obtain a substitution which “forces its border.” One can then represent the tiling space as an inverse limit of an inflation and substitution map on a cellular complex formed from the collared tiles; the cohomology of the tiling space is computed as the direct limit of the homomor...
متن کاملPolygonal tiling of some surfaces containing fullerene molecules
A tiling of a surface is a decomposition of the surface into pieces, i.e. tiles, which cover it without gaps or overlaps. In this paper some special polygonal tiling of sphere, ellipsoid, cylinder, and torus as the most abundant shapes of fullerenes are investigated.
متن کاملProximality in Pisot Tiling Spaces
A substitution φ is strong Pisot if its abelianization matrix is non-singular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot φ that satisfies a no cycle condition and for which the translation flow on the tiling space Tφ has pure discrete spectrum, we describe the collection T P φ of pairs of proximal tilings in Tφ in a natural way as a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004